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Central Limit Theorems in the Area of Large

Deviations for Some Dependent Random Variables

by

Narasinga Rao Chaganty and Jayaram Sethuraman

ABSTRACT

A magnetic body can be considered to consist of n sites, where n is large.

The magnetic spins at these n sites, whose sum is the total magnetism present in

the body, can be modelled by a triangular array of random variables (X n) Xnn)).

Standard theory of Physics would dictate that the joint distribution of the spins

can be modelled by dQn(x) z- 1 exp[-Hn(X)] IldP(x.) where x (xl,... YXn) E
n -Hn-(x ,  n

where H is the Hamiltonian, z is a normalizing constant, and P is a probability
n n

measure on R. For certain forms of the Hamiltonian Hn  Ellis and Newman

(Z. Wahrscheinlichkeitsheorie und Verw. Gebiete 44(1978) 117-139) showed that

under appropriate conditions on P, there exists an integer r l such that S /
n

converges in distribution to a random variable. This limiting random variable

is Gaussian if r= 1 and non-Gaussian if r >2. In this article, utilizing the

large deviation local limit theorems for arbitrary sequences of random variables

of Chaganty and Sethuraman (Ann. of Probability, 13 (1985)), we obtain similar

central limit theorems for a wider class of Hamiltonians Hn which are functions

of moment generating functions of suitable random variables. We also present

a number of examples to illustrate our theorems.

......................................................................... ''-'_._'.



1. Introduction.

In this article we obtain central limit theorems for some dependent random

variables which are used to describe the distribution of magnetic spins present

in a ferromagnet crystal. A ferromagnet crystal consists of a large number of

sites., The amount of magnetic spin present at site i will be denoted by

X~n ) ,i = 1, ..., n, where n is a positive integer. The magnetic spin present

at any site interacts with the magnetic spins at its neighboring sites and

hence gives rise to some dependency among the random variables X(n),s. In the1

Ising model, the joint distribution, at a fixed temperature T > 0, of the spin

random variables (Xin) Xn)), is given by

(1.1) d% (x) Z n exp _T. dP(x

where x = (x 1 ,... cxn) Rn and P is a probability measure on R. The function

H n(x) is known as the Hamiltonian and it represents the energy of the crystal

at the configuration x, and zn is a normalizing constant which is also known as

the partition function. In many cases, an explicit evaluation of zn is very

difficult and physicists usually try to evaluate the limiting free spin per state

&(T), at the temperature T, defined as follows:

(1.2) &(T) = - lim E(log(z ))/n].

For some particular types of Hamiltonians, it has been shown by physicists that

there exists a temperature level Tc such that the function &(T) is infinite or

finite according as T< T or T >T (see Kac (1968)). A phase transition is said
c C

to occur at the critical temperature T c. As pointed out by Ellis and Newman (1978b),

the existence of the critical temperature can be demonstrated in yet another way.

We may be able to show that for T >T, there is a weak dependence among the random

variables (n) X n)) and a standard central limit theorem is valid for S n/V' ' nn

6/2
and that for T= Tc there exists a 6 E (1,2) such that S n/n converges to a

C
~. -h_ ....-.
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non-Gaussian limit and for T < T, due to the strong dependence among the X n ) 's,

"..

the random variables tend to cluster in several ergodic components. This shows a

marked discontinuity in the asymptotic distribution of Sn as the temperature T is

allowed to vary and represents our approach to demonstrating a phase transition.

In section 2, we consider a special case for the Hamiltonian, H by setting
1n

it to be equal to -_. x This is known as the Curie-Weiss model. The

asymptotic distribution of Sn for this model when P (which appears in Theorem 2.1)

is symmetric Bernoulli is obtained by Simon and Griffiths (1973). In a two paper

series, Ellis and Newman (1977, 1978a, 1978b) extended Theorem 2.1 of Simon and

Griffiths to the class of probability measures L, defined in 2.2 (see also Ellis

and Rosen (1979)). We state their extension precisely in Theorem 2.6. Recently

Jong-Woo Jeon (1979) in his Ph.D. dissertation gave a simpler and statistically

motivated proof of Theorem 2.6. The goal of this article is to extend Theorem 2.6

for a larger class of Hamiltonians Hn and probability measures P. Our main result,

Theorem 3.7 is stated in Section 3. The proof of Theorem 3.7 relies on a recent

large deviation local limit theorem of Chaganty and Sethuraman (1985), which is

restated in Section 3 as Theorem 3.4.

Let Tn, n > 1, be an arbitrary sequence of random variables with analytic

moment generating function *n(z). We assume that Tn satisfies the conditions of

Theorem 3.4. In our generalized model the Hamiltonian H (x) is taken to be

equal to - log[n (s n/n)], where s = xI + + x n . Thus, the joint distribution

of the spin random variables (X n),...,X nn)) is given by

(1.3) dQn(x) = zn ¢n(sn/n) ndP(x.),

(n)+ . (n )  Une
where P is an arbitrary probability measure. Let Sn = n + + n d -.*.

appropriate conditions on the probability measure P we show in Theorems 3.7 and

3.18, there exists an integer r > 1 such that S nn 1 -1/2r converges in distributionn

to a random variable Yr•, which has a non-normal distribution when r 2 and normal

distribution when r = 1. The technique of our proof is to introduce a new random

a- -. . . . . . .i. . . . ..-
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( n ) (Cn ) " " -
variable Wn conditional on which, X i, .. ,x become i.i.d. It is easy

to obtain the limiting distribution of Wn and the conditional asymptotic distri-

bution of Sn /nl/r Using the results of Sethuraman (1961) we deduce the

nnasymptotic distribution of Sn/nl-l"-5]r

We now briefly give our reasons for calling these theorems on the asymptotic

distribution of Sn under ndefined in (1.3), as limit theorems in the area

of large deviations. A standard technique to obtain the asymptotic distribution

of Sn under Qn is to first obtain the asymptotic distribution of Sn under Pn.

where

(1.4) dPn(x) = IdP(x.)

and then to use contiguity arguments, as in LeCam (1960). This technique breaks

down completely if r Z2. For the various models considered in Physics which

are described in greater detail in Sections 2 and 3,

dQn(!) H ()
(1.5) ILn (X)I = log dP_ I + log Zn I

converges to in probability under Pn and thus contiguity arguments are not

applicable here. Under Pn' Sn/vn has a limiting normal distribution, also,

ILn(x)l is small in the area of ordinary deviations of Sn, that is, when Sn

is finite, while it is large otherwise. Thus from the point of view of Pn' we

are looking for the asymptotic distribution of Sn$ when Pn is modified by Ln(x) ,

which is substantially different from 1 in the area of large deviations of Sn

This view point helps in a statistically motivated proof of the asymptotic

distribution of Sn under Qn and describes the background behind the title of

this article. One should also note that the normalizing factor on Sn in its.

asymptotic distribution under is different from the corresponding factor

under Pn

~~~~.. ..... -... ..... "-.... .'" ..



4

2. A Brief Summary of Curie-Weiss Model and Its Extensions.

In a ferromagnetic system with only isotropic pair interactions and with

no external magnetic field, the Hamiltonian Hn may be taken to be _-ZZaj x x3 ,'
n 2o al adj tht. °

where a.. > 0. The Curie-Weiss model assumes that a for all i and j, that
1;Jj n

is to say that each spin interacts equally with every other spin with strength V

-and takes P to be symmetric Bernoulli, i.e., P({-l)=P({M}) =-. Replacing
n 2

P by PT(x) = P(xF ), we get

-l 2
(2.1) dQn(x) = zn exp[s /2n] ldP(x

where sn = x I +... xn. This model has the advantage that the limiting free

spin per state can be solved exactly. The existence of the critical temperature

and phase transition for this model was demonstrated by Kac (1968). The

asymptotic distribution for the total magnetism, Sn, for this model was obtained

by Simon and Griffiths (1973). This is contained in Theorem 2.1.

Theorem 2.1 (Simon and Griffiths) Let . j= 1, n be a triangular array

of random variables whose joint distribution is given by (2.1) and P be symmetric
/3/4""

Bernoulli. Then Sn/n converges in distribution to a random variable whose

4
density function is proportional to exp(-y /12).

Theorem 2.1 was extended to the class of probability measures L, which is

defined below, by Ellis and Newman (1978b).

Definition 2.2. Let L be the class of probability measures P on R such that

2(2.2) f exp(x /2) dP(x) < .

Fix PE L. It can be shown that condition (2.2) guarantees the existence

of the moment generating function (m.g.f.), m(u), of P. Let h(u) = log m(u) be

the cumulant generating function (c.g.f.) of P. The function G(u)=u 2/2 - h(u)

plays an important role in Theorem 2.6 below.

. . . .. . . . .. . .



Definition 2.3. A real number m is said to be a global minimum for G if

G(u) 'a G(m) for all u.

Definition 2.4. A global minimum m for G is said to be of type r if

(2.3) G(u+m) -G(m) c C U ur(2 r) I dIr )as u+O,

(2r)where c 2r G G (m) is strictly positive.

Definition 2.5. A probability measure P is said to be pure if G has a unique

global minimum.

Let Y rx r2:1, be a sequence of random variables with density function p~)

where
F 2r

(24 ~ r exp E-c 2ry r/(2r), if r t2

N (0, (1 - c, if r=lI

and where dr is the appropriate normalizing constant. With these definitions

and notation we are now in a position to state the generalization of Theorem 2.1,

due to Ellis and Newman (1978b).

Theorem 2.6. (Ellis and Newman). Let P4E L. Let P be pure, that is, let m be the

unique global minimum of type r for G. Let (n =1, n, be a triangular

array of random variables with joint distribution given by (2.1). Let

G (n) ) Then
(n x1 ++ - Then

1-1/2r d
(2.5) (S nm)/n

n r'

where Yr is a random variable with density function given by (2.4).

hr

It is easily verified that the symmetric Bernoulli measure is pure and

belongs to the class L with the corresponding value of r equal to 2. Thus

Theorem 2.6 contains Theorem 2.1.

S=x)... n.............. 7. ..
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Note that the moment generating function M(z) of the standard normal is

given by exp (z 2/2). Thus we can write (2.1) as

(2.6) [M(sn/n)]n ndP(xj).

.dQn(X) =z n

One might ask the question whether it is possible to obtain limit theorems

of the type (2.5) when [M(z)]n is replaced by the m.g.f. 4n (z) of a random variable

Tn, satisfying some conditions. We answer this question in the affirmative in the

next section.

3. Further Extensions of the Curie-Weiss Model.

In this section we propose to extend Theorem 2.6 by enlarging the class of

Hamiltonians as well as the class of probability measures L. The large deviation

local limit theorems for arbitrary sequence Tn, n 1, of random variables of Chaganty

and Sethuraman (1985) (stated below) plays a key role in this extension. The

Hamiltonians, Hn, in our generalized model (3.13) are taken to be the cumulant

generating functions of these random variables Tn.

n'n
Let T) n > 1} b a re af non-lattice valued random variables with <c},

nm.g.f.'s On (z), n 2t 1, which are analytic and non-vanishing for z in Q; {z, Real (z)[ <c},

with O<c<--5 Let I= (-a,a) and Q {z: (Real(z)f <a}, where O a<c. Let

(3.1) 'n(z) = n log On(Z) , for z E Q

(3.2) and Yn(u) = sup [us - 'pn(s)] , for u E R.

Isl< c

Let An = ('p'(s); sE I}. For uEAn, we have Yn(u) = [usn - n(Sn)]' where s n E satisfies

n(sn) =u. Let P be a probability measure which satisfies the following condition:

c
(3.3) f exp[on(x)] dP(x) < - for all n-l.

-c

Let h(u) denote the c.g.f. of P. It is easy to check that condition (3.3) implies

that h(u) is finite for u 6 R where

(3.4) R = {u: Yn (u) <

Let""""
Let (yn u) h(u) for u Rn

(3.5) Vn (u) nfor u 0 R

La2a.2 , ...... -* - .. ... . . . .. . . . -.-. ... . - .. , . .. °. --..
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The function V plays the same role as the function G of Section 2.

n

Definition 3.1. Let L* be the class of all probability measures P on (-c, c)

satisfying condition (3.3). We assume that there exists p, P> > 0 such that

(3.6) f expC-1Vn(u)] du = o(n )

Rn

and V 's have a unique global minimum at some point mn .  Furthermore theren

exists n, > 0 such that

(37) inf [VnCmU) - nCm) ] = [V (m 6) -V n(mn)J for all 0 < 6 <n3n7n n n n n n
Jul > 6

Remark 3.2. Condition (3.7) is used mainly in inequality (3.27) of Lemma 3.13.

An easily verifiable sufficient condition for (3.7) is

(3.8) Vu) > 0 for u > m and Vu) < 0 for u < m

In all the examples of section 4 we will be verifying (3.8) instead of (3.7).

Remark 3.3. Suppose that R= (- ,). If yn(u)/lul converges to as Jul ,

then condition (3.3) implies (3.7) as seen below:

(3.9) exp[-Vn(u)] = exp[- nCu) + h(u)]

=expI-y~ (u)]E f exp~ux] dP(x) + {expL'ux] dP(x)]
Ixj<Aj A

exp[-y (u) + uA + T> exp[,n(x)] dP(x)

y Cu)
< exp[-uIn( ) n A)]+ f exp[*n (x)] dP(x).

lul lxl>A n

The right hand side can be made close to zero first by choosing A and then letting

Jul-. This shows that V (u) as Jul -*. Since mn is the unique global mini-

ni

..... .............. |....... t ..... ...... " °, -°" :• ' ",
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Let m E An. Then there is a T in I such that i'rn) = mn. For t E I,
n nn n n

define

(3.10) G n(t) n t(T n + itm n n (T n it) .

The following theorem, which provides an asymptotic expansion for the density

function kn of T n/n in terms of the large deviation rate yn$ is due to Chaganty

and Sethuraman (1985).

Theorem 3.4. Assume the following conditions for T n

(A) There exists a > 0 such that 14n(z)l < 8 for z E Qa and n 2- 1.

(B) There exists a > 0 such that "(T) - a for T E I and n - 1.n

(C) There exists n > 0 such that for any 0 <6< , 

inf Real (G n(t)) = min[Real(Gn (6)), Real(G n(-5))], for n > 1.

(D) There exists p > 0 such that

sup f n(T+ it]/,n[t)I 1/n dt= o(nP).
T E I - n

Then 1/2

(3.11) k (inm exp (-n-y(mn)El1( 0

Remark 3.5. When T is the sum of n i.i.d. random variables, condition (C) is

automatically satisfied and conditions (A), (B), (D) are easy to verify, since

they do not depend on n.

Remark 3.6. Suppose that m E nAn. Then there exists E < I such that M( n) ; i,

nn n n

for n 1 1. In this case one can verify that , . .ij)/:(tn) - 0l+O(Imn-ml)]

and thus we can rewrite (3.11) as

. . L
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The cumulant generating function of P is given by

(4.6) h(u) = log(3/2) - 3 loglul + Jul + log[Lul 1 L
e -2 1ul) _ e-Z1ul)], u E R.

Therefore u E R,

(4.7) V(u) = y(u) - h(u)

= E-1+ =1+U ]+ loglul + log[-1+ Vl+u 2- Iul

- log[Jul(l~+e- 2Ju) (1-e-2(uL .+ log( 4/3).

Part (I). We just need to verify (4.1). Now

(4.8) V'(u) = l+ (1/u2) + (2/u) - u/(ucoth(u)- 1)

> 1 + (2/u) - u/(ucoth(u)- 1)

= (u 2 + u) (coth(u) - 1) + ucoth(u) - 2 > 0
(ucoth(u) - 1)

for u 2: 2, since ucoth(u) - 1 > 0 and coth(u) > 1. Again

[2 + 1 +u2][ucoth(u) - 1 -u
2

(.9) V'(u) = for u > 0.
u[ucoth(u) - 11

By differentiation one can verify that

2 4
(4.10) ucoth(u) - 1 > u for 0 < u < 7.5

and
2 4 u2(4.11) for 0 < u < 2.19.

3 1> 2+ /l+u 2

These two inequalities show that V' (u) > 0 in the region 0 < u 2. Since

1 1 3V" (0) = y" (0) -h" (0) = - = .- , V has a unique global minimumi of type 1.

................

. . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
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written down. Part (I) will show that V has a unique global minimum of type r at

mn- 0. Part (II) will verify the four conditions of Theorem 3.4 or Theorem 3.16

depending on whether T is non-lattice or lattice. Part (III) will verify condi-
n

tions (3.3), (3.6) and (3.8) that insure that P E L*, in the case of continuous

P and conditions (3.3), (3.8) and (3.38) that insure that P E L*, in the case of

discrete P. These three parts will imp ,:, that the random variable Sn, after proper

normalization converges in distribution to Y', for appropriate value of r.r

The verifications of parts (II) and (III) are usually very easy. The veri-

fication of Part (I) presents more difficulties. However, in all the examples

considered, Vis symmetric around the origin and hence Part (I) is verified once

we show that

(4.1) V'(u) > 0 for u > 0.

Note that (4.1) also verifies condition (3.8). The verification of (4.1)

is routine in all the examples, but sometimes long, and therefore only the main

steps are presented. One should also note that in part (II), condition (C) or

(C') is automatically satisfied by Remark 3.5.

Example 4.1. Let F have p.d.f. (1/2) exp(-Ixl), --<x<, and P have p.d.f.

(3/4)(1- x 2 ) for lxi <1. Thus the joint distribution Qn given in (3.13) becomes

- n 2 2 - (_2 d

(4.2) dn(x) = Zn (3/4)n (l- sn2/n 2)-xj) j.ldx

In this case

(4.3) W(z) 0 - z ) andn n

2(4.4) 4(z) = -log(l-z ) for IReal(z)t < 1,

(4.5) y(u) log 2 + [-1 + l+ u2 1-2 log lul + log [-1+ @'l+u 2 ], for u E R.

-. . - . .o - o ° , . . . . . . . . . . . . .. . .. , . . .- ,* .
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where

(3) __n' (_n) -1/2r -1/2r(3.43) (yn )  k exp~n(h(mn + n +V-n) .
n(1-1/r)/2 kn~mn+n n . .V (mn .
n

Imitating the proofs of Lemmas 3.9 thru 3.13, one can show the following:

) -gn(Yn) g(y) as n , uniformly on bounded intervals of y.

(ii) 1/4r gn(Yn) f I g(y) dy as n -.

Iyn -!n5 -

(iii) 4 g/4 (yn) 0 as n -.

lY nl 4 r

The above three steps (i), (ii), (iii) complete the proof of Lemma 3.19.

4. Applications.

In this section we illustrate the main theorems of section 3 with four

applications and demonstrate limit theorems in quite complicated situations of

dependent variables. The model (3.13) for the joint distribution of (X n). X n))

is completely specified if Tn and P that arise in it are specified. To simplify

matters, in all the examples of this section we let T be the sum of n i.i.d.
n

random variables with common d.f.F. The four examples below contain all occurences

of lattice and non-lattice Tn, and continuous and discrete P. The limit distri-

bution of the normalized sum Sn = n ) + + x(n) is normal (r= 1, in the notation
n I n i

of Theorems 3.7 and 3.18) in example 4.1 and is non-normal (r=2) in examples

4.2, 4.3 and 4.4. The results of Ellis and Newman (1978b) show that limit distri-

butions with every possible value of r > 2 can also arise in suitable models.

In all the examples below we will specify F and P and write down the joint

distribution Qn. The exact expression for on' *n -, yn = y, h and Vn V will be

n.. .

* ....... ....... . .
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If T satisfies the conditions of Theorem 3.16, thenn

(3.40) (Sn  nTn)/nli/2r d

where Yr and Tn are as defined in Theorem 3.7.

The proof of the above theorem parallels the proof of Theorem 3.7. We

therefore outline briefly the modifications that need to be done. Note that

dQn can be written as

(3.41) d%( 11dM (x) f (y),
Qn~x) n'y n

where = zn kn(n + n-/2ry) expEn h(mn + n-i/2ry)] is a probability mass
n

function of a lattice valued distribution with span hnA = hn/n l-/rand dMn y (x)

is as defined in (3.30). We introduce discrete random variables Wn with p.m.f. fn:

It suffices to show that W* converges weakly to a continuous random variable Wn

with probability density function f, defined in (3.35). The rest of the proof

is identical to the proof of Theorem 3.7. Note that the span, hA, of W* converges

to zero. By a theorem of Okamoto (1959), the sequence of random variables W.

will converge in distribution to W, once we prove the following:

Lemma 3.19. For ye R, define yn = hn'[y/hn]. Let the probability mass function

and the probability density function f be as defined above. Then
n

(3.42) f(y) asn

uniformly on bounded intervals of y.

Proof (outline). Note that f(y) = g(y)/fg(y)dy, where g(y) is as defined in

(3.15). We first write "

gn (Yn):

,.-.......
* . • .. "

fn-.[ ..

i -'? ..-." -.. -: ." .. ." ". " ." - "% '. ', ,. -.." .. " , , ." ". ., " -'.. " . . -.- % - • . . . " . - , ." .-.-.-' .-:.
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(C') There exists n>0 such that for any 0<6 <n,

inf Real(G n(t)) = min[Real(Gn(6)) , Real(G n(-6))] for n - 1,
6 Itl : n/Ilhl I

where G (t) is defined by (3.10).n

(D') There exists p > 0 such that 1hnI- I = O(nP).

Then
1/2

(3.27) -62 Pr(Ln- =V 1exp(-ny (MnJ)El+O()J.

As before for a probability measure P on R, define V (u) as in (3.5).
n

The class of probability measures that are of interest is defined below.

Definition 3.17. Let L* be the class of probability measures P satisfying

conditions (3.3), (3.7) and (3.38)(defined below).

PI
(3.38) [ exp[-tV (u)] = 0(n ) for some t, p, >0.

UE n

Note that (3.38) is the appropriate replacement of (3.6) for the lattice valued

case.

For Hamiltonians which are functions of the moment generating functions of

lattice valued random variables we have the following theorem almost identical to

Theorem 3.7.

Theorem 3.18. Let P c L*. Let Xn). , j= 1, ... , n, be a triangular array of

random variables satisfying IXIn) < c and having a joint distribution given by

(3.39) dQn(x) = zn/ n(Sn/n) fldP(x.),

where *n is the m.g.f. of the lattice valued random variables Tn. Let

Sn X I "). Let Vn have a unique global minimum of type r at the

nnpoint mn E An. Let in~ converge to a point m belonging to the interior of nAn.,,
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The unconditional limiting distribution of (S nT )/nl ' /2? is just the mixturen n

of the limiting conditional distribution and f(y), by Theorem 3.15 of Sethuraman.

This completes the proof of Theorem 3.7. II

Remark 3.14. When T is the sum of independent, normally distributed random
n 2

varibles with mean zero and variance one, *n(Sn/n) becomes exp[s /2n] and the
Yn n

class of probability measures L* reduces to the class L. Thus Theorem 3.7

generalizes Theorem 2.6 to a larger class of Hamiltonians and Probability measures.

We now state the theorem of Sethuraman (1961) which was crucially used to

obtain the limiting marginal distribution of (Sn - )/n 1-1/2r in the proof of

Theorem 3.7.

Theorem 3.15 (Sethuraman). Let An be a sequence of probability measures on VxW,

where V and W are topological spaces. Let pn be the marginal probability measure

of An on V and Vn (v,.) be the conditional probability measure on W. Suppose that

1n converges to a probability measure u for every measurable set in V and for

almost all v with respect to v, vn (v,) converges weakly to v(v,.). Then Ann n

converges weakly to A, where

(3.36) A(Ax B) = f v (v,B) do (v)

A

for every measurable rectangular set Ax B.

We now turn our attention to the case where Tn, n2:1, are lattice valued

random variables with spans hn, n 1. The following theorem, which is analogous

to Theorem 3.4, was proved by Chaganty and Sethuraman (1985).

Theorem 3.16. Let Tn n >l, be a sequence of lattice valued random variables with

spans hn, n- 1. Let mn belong to the range of Tn/n. Assume that conditions (A),

(B) of Theorem 3.4 hold and replace conditions (C), (D) by the following:
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We first note that

(3.32) log E M exp~t (S n nT n)/nl1-l/ 2 r]

n,y

= ll2r+h l~2 +m (Y) h h(mnr> ]

-1-1/2r 1-/r h'~ (r() ~ h m (y))

n n

1-/2 h+ na 1-/2 n 2-1/rr +

since (m n' ) Thu

2n

n,y

Fh" (mty if r Z: 2
h"(m)ty if"~t r= 1.

This shows that the limiting distribution of (S n- nTn )/nll given W n y

is degenerate at h"(m)y if r > 1 and N(h"(m)y, h"(m)) if r =1. Next we note

that

(3.34) f~ (Y) = -n 1/2 kn (mnr(y)) exp(n h(m~ (y)

- n(y)/ gn (y) dy,

where g n(y) is as defined in (3.16). By Lemmas 3.9, 3.11 and 3.13 it follows

that

(3.35) f (y) f f(y) = g(X) as n

fg(y)dy

where g(y) =exp[-y 2r c 2r /(2r)I1l. Thus the limiting distribution of Wn is f(y).



is

Hence

f n g(y) dy = O(nq) exp[-(n-Z) - .C -r --+K -n ( 1 r."
nl/4r n~y -(2 -) 1Vn- n

which goes to zero since IKnI 5 K for all n. The proof of Lemma 3.13 is now

complete.

Proof of Theorem 3.7. We first express dQn defined in (3.13) as follows:

-l
(3.28) dQn(X) = zn  C(s /n) IldP(xj)

Qnx n n n

= Zn- fexp(y sn) kn (y) dy HdP(xj).

Substituting m (y) = mn + n-/ 2r y, we getn r
-1. -1/2r(3.29) d(X Z- n-i/2r fexp(m (y) sn) knCmnCr')) dy ]?dP(x.)

-nx Zn n ,r n n mn,ry)

z-1l -1/2r -hm
= Zn n IIIexp(xjmn , r ( y) - h~mnr(y)) dP(xj)

kn Cm (y)) exp(nh(m (y)) dy
nn ,r n ,r

= f T1dM (xj) f (y) dy, wheren,y j n

(3.30) dMn y(xj) = exp(xjmn(y) - h(mn(y))) dP(xj) andn y j r n Yr nr j

-1 -1/2r
(3.31) f (y) zn  n k (m (y)) exp(n h(mn  (y))).

n n n n,r nry)'

Since fdQnCx) = 1 and fdMn,y(xj) = 1 for each y and j, we have ffn(y)dy 1. Thus

we can introduce random variables Wn with probability density function f n(y) and
(n)

the representation (3.29) of dQn(x) shows that given Wn  y X j = ... , n are
n '

i.i.d. with common distribuiton M y(x).-

We now proceed to obtain the limiting distribution of (S -nT )/n1 -1/2 r undern n

dM (x).
n y

.. . .... ,
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1 -/2r
Substituting z y, we get

(y)- .,

< ,2in(n n(l-i/r)/2 f i l4rexp[-n(V (mn+z) - V (m))].

* lexp(n Y n(m+z)) kn (mn +z)dz

-0(np+(l+l/r) /2) max exp[-(n-Z)(V (mn+Z) - Vn(mn))]
n 1/4r)lnn nn n

*fexp(-t(V + z) - V nmn)))dz.

The last inequality follows from Lemma 3.12. This together with condition (3.6)

yields

(3.27) Ij~~Ir(y) dy~ !5 O(n max 1 1  e xp C-(n-Z(V(mn z) V

= O(nq) exp[-(n-Z)Ln],

where

q p1 + p + (I i/r)/2,

and

n mi n 1/4rLVn(mnz - Vn (m n. This minimum is attained at
jzl>n-

z = -n -I/4 r by condition (3.7). Therefore,

Ln  min[(Vn(m n n
- /4r) Vn (Mn)), (Vn (M n - n /4r) - V(mn))]

c 2rrn 1 K (2r + )/4r+ K n -- "(2r)~ r n

n-......

q .. °o~o °°. °. . °. ,° .°.-. . ° . . . . . . . . . . . . . . . . . .. . . . .... . . .-.. . .
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(3.24) sup lexp(n Yn(mn+y)) kn(mn+y)t = O(np+l) as n - .".

yn

Proof. An application of the inversion formula yields (see (2.12) of Chaganty

and Sethuraman (1985)),

lexp[n((m n +y)s - *nCs))] kn~mn  y )

in f mep yJIdt

= I-I expn*n(s+it) - *n(s) it(mn+Y))] dtl

n f I n(S+it) /n(s)I 1/n dt.

Taking supremum with respect to s E I and using condition (D) of Theorem 3.4 we

get
sup lexp(nyn(m +y)) kn (n+ y)I = O(np ) •
y

Lemma 3.13. Suppose that Vn has a unique global minimum at the point mn E An

and let gn be as defined in (3.16). Then

(3.25) 1/4r gn(y) dy 0 as n "lyl nl/ r g ( '  y + ..

Proof. Let mnr(y) = mn + n-/
2 ry. By (3.16) we have

- 1/2

(3.26) ytn1/4r gn (Y) dy n 1/4r n n rny lyl nl/rk~nrY)"=

exp[n(h(mn(y)) + Vn(mn))] dy

n~ ()n1/4r knCmn,r(y))
n Yn/ "

exp [-n(VnCmn,r(y))-Vn(mn)) + nn(mn,r(y))] dy.

--.. o-

'-I . ". °



12

Proof. Note that n-y/2r converges to zero uniformly in y for Iy < n1/4r

Since m is an interior point of nA there exists N3 (independent of y) such that
n3

mr() = (m+n-/ 2 ry) E An for n > N3 . Applying Theorem 3.4 for n>N 3 , we get

1/2

(3.22) lyl l/4r gn(y) dy= L n y exp"n""mn1/4rlnn1/4r ex~~ nr (Y)) + Vnmn) _.'d

SknM (n,rY)) dy

1ynl/4r exp['n(Vn(mn,r(Y)) - Vn(mn))]

[1+0(Im nr(y) -ml) +O(-)]dy

= J Xn(y)dy,

where

1/41

(y) = (Jyl n /r)exp[nCV (mn~C) Vn (mnl]:

El+O(1mnr(y)-mi) +O(-)]

and I(-) is the indicator function. It follows from Lemma 3.10 that IAn(y)l is

bounded by an integrable function. We can now conclude from Lemma 3.9 and

Lebesgue dominated convergence theorem that

(3.23) f Xn(y) dy -~f g (y) dy as n .

The proof Lemma 3.11 is now complete.11

The next Lemma 3.12 is needed in the proof of Lemma 3.13.

Lemma 3.12. Let Tn, n -1 be a sequence of random variables satisfying the

conditions of Theorem 3.4. Then

........................................*. .. ... .... ... ... ... ... .... ... ... ... ...
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(3.0)-1/2r 2r
(3.20) n[V n(mn +n y) -n (rn)J y 2r/2 (2r)

for all n >- N, and I < nI/4r

Proof. Let 0 < E < C2r/2. Since C2rn converges to C2r we can find N such -

that C2r,n >C2r/2 + c for all n>N 1 . Recall that yn(mn)= mnTn - n('n), where Tn is

such that 1Pn(n) =mn It is easy to verify that yA(mn) =Tn and yn' = 1'' (n)]

Also, Y(2r+ l) (n ) is the ratio of a simple function of (2r+ 1) derivatives of

n n

*n at Tn to [*n ( 1
2r. Conditions (A) and (B) of Theorem 3.4 imply that all

these derivatives are bounded uniformly in n and that 0" (Tn) a a > 0 (see (2.6)

(2 r+1)of Chaganty and Sethuraman (1985)). Hence y 2  (mn) is uniformly bounded in

n and consequently v(2r+l)n (n) = (2r+l) (rn) h (2r+l) (mn) is also uniformly

bounded in n. Therefore

2r 2r+l
V (n u) V(in) u c /(2r)! +K uVn (an+U) Vn (rn) u 2r,n n

as u 0 0, where n K < for all n. Thus

n[Vn(mn +n-l/ 2 ry) Vn(mn )]

2r 2r ll/2r
ai y C2rn/(2r)! K y n

> y2 rc~r/2(2r)' +. y2rCE/(2r)1- K y/n1/'2rj [::

2r

'- y c2r/
2 (2r)I

if ll < nl/4r and n > N = max{Nl, (K(2r)!/E) 4r This completes the proof of

the Lemma 3.10.

Lemma 3.11. Let g and gn be as defined in (3.15) and (3.16). Then under the

hypothesis of Lemma 3.9 we have

(3.21)l/4r gn(y) dy f J g(y) dy as n
fy" 1/r "

° ~ ~ ~ ~ ~ ~ ~ ~ ~ y 5n -m-- . -°...m o
°%" % .• ° .°. .. • . " ....
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For y c R, let

g(y) X E C2r / (2r)! ] and

1/2

(3.16) (y) = n knmn + n-1/2ry) exp[n(h(m +n r + Vnmn))]

where En's are defined as in Remark 3.6. The functions gn's arise in the proof

of Theorem 3.7. Lemma 3.9 shows that gn(y) converges to g(y) as n for each

y. The next four lemmas, Lemma 3.10 - 3.13, show that

(3.17) f gn(y) dy - f g(y) dy as n - .

-- 0

Lemma 3.9. Suppose that Vn has a unique global minimum of type r at the point

mn An. Let mn converge to m, where m is an interior point of nAn . Suppose that

V 2 (mn = c 2rn converges to c2r as n- . Then

(3.18) gn(y) +g(y) as n +

Proof. Fix y E R. Let m (y) m + n-l/2ry. Then m (y) converges to
n ,r n n ,r

m and mn,r(y) E An for sufficiently large n. Applying Theorem 3.4 together with .

Remark 3.6, with mn replaced by mn(y) we getn ~~n,ry)wge

(3.19) gn(y) = exp[-nYn(mn,r(y)) + n(h(mn r(y)) Vn(mn))]

El+O(m (y) - ml) + 0(1)]
n,r

Sexp-n(V n(m ,r(y)) - Vn(mn))] [1 + O(Imn,r(y) -ml) + 1(

n2r n n nr
expC-y c 2r,n/(2r)! + n o (yl 2 r/n)] [l+0lm nry)-ml) +o()]

+ g(y) as n +. I

Lemma 3.10. Suppose that the Vn 's have a unique global minimum of type r at the

point mn E An • Then there exists N such that
n.
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1/2 m

(3.12) k Cmn) = me n+( 1

For each integer r-l, let Y* be a random variable with probability density

function given by dr exp[-C 2T y2 r/h" (m) I2r (2r) ! ] if r > 2 and

N(O, h" (m) Eh" (m) + c2 I/c2) if r= 1, where c2r is the constant that appears in

Theorem 3.7 below and d is the normalizing factor. With these assumptions

and notation, we are in a position to state the main theorem of this section.

Theorem 3.7. Let X(n) j = 1, ..., n be a triangular array of random variables

satisfying IX~n)I < c and having a joint distribution given by
J

(3.13) dQn(X) = zn1  n (s/n) RdP(x.),

where 0n is the m.g.f. of Tn and P E L*. Assume that Vn, defined in (3.5), has

a unique global minimum of type r at mn e A . Let mn-m and V(2r) (mn) c2r as
n n 1 n I- Sn .(n) (n )  I

n , where m is an interior point of nA . Let S Xl + + "in nnn

T n satisfies the conditions of Theorem 3.4, then

1-1l/2r d *(3.14) (Sn -nTn) /n d

where 1P(Tn) = mn and Yr is as defined above.

The proof of the above theorem is postponed until the end of Lemma 3.13.

Remark 3.8. The distribution function %n(x) is well defined because

zn = ,exp Cn ,n(sn/n) I 11dP(xj)

c
!_[fexp[*n(x)] dP(x)] n <

wherein we have used condition (3.3) and the fact that is a convex function.

. - ."...... ........... ,.........-....... .
-" : : .~~~~~~~~~~~~~..."' -'': ................. ""' -' ................. " '"""-"" ":"" '-
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Part (II). It is easy to verify that the random variables Tno n zl, satisfies

conditions (A), (B) of Theorem 3.4. Condition (D) also holds because

(4.12) sup f Ij(r+it)/(t)I dt
I-r <a<l --

g os p 2 ( l1 - r2 ) d t

-r < a 0 [4t 2 2 + (1 -t2 + t2)

- 2 + 2 f - -dt <-1

Part (III). To show P E L*, we only need to verify conditions (3.3) and (3.6).

Condition (3.3) trivially holds since exp[i(u)] is bounded on (-1, 1), the support

of P. Condition (3.6) on the integrability follows from the fact V(u) %, log Jul

as Iu

We can therefore conclude in this example that

(4.13) Sn//i d N(o, 1/3).

Example 4.2. Let F be the distribution function of the sum of two independent

and identically distributed uniform random variables on the interval (-b, b) with

b= ///2 . Let P be standard normal probability measure. The joint distribution

Qn is given by

I - n n sinh(bsn/n) 2n 1 2

(4.14) dQn(x) = zn(21) exp [- j ]
dn n(bs n) ] epE~ Ifd~

In tnis example

(4.15) n (z) = [sinh(bz)/(bz)]
2n

(4.16) *(z) : 2[log(sinh(bz))- log(bz)] for IReal (z)l <

Also

(4.17) y(u) sup [us- 4(s)] for Iul <2b.

. . .. . .. . . . ..... p<"--.. .. ..."""."..
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Thus

(4.18) V(u) = y(u) - h(u) y(u) - 12)

= us1  O(Sl) - (u 12) , for I ul < 2b,

where ''(sI) 1 u.

Part (I). Differentiating (4.18) with respect to u1 we get

(4.19) V'(u) = EsI - '(Sl

= [s2 _ 2bs coth(bs ) + 2]/s , where '(s = u.

2Taking successive derivatives one can show that t - 3(t coth(t) -1) > 0 for t > 0.

Letting t = bs and noting that b = v 1- , we get

2
(4.20) s2 -2bs coth(bs I) + 2 > 0 for s > 0.

Thus V'(u) > 0 for u > 0. With our choice of b = .- /V -one can verify that

- V" (0) = 0 and V( 4 ) (0) = 3/5 > 0. Therefore V has a unique global minimum of

order 2 at the origin.

Part (II). We need to verify that T satisfies conditions (A) thru (D) of

n

Theorem 3.4. Note that 4"(0) = 1. Hence, there exists a > 0 such that

'"(T) > -=a for ITI < a. This verifies condition (B). It is easy to check

that condition (A) also holds for this choice of a. Consider

_____ i _____ ] (sinh (bT)) + snb)

sup i nhbj L 2(t2  t 2)

for some constant c. Therefore

........-.* ..

..............................................................................
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(4.21) f I l(r +it)/ (Tldt - t f 1 dt+ f dt <-I t l I It [ > I dt <. -

This verifies condition (D).

Part (III). We only need to verify that conditions (3.3) and (3.6). Let

2
E > 0 be given. There exists a 6 > 0 such that lx1 < 6 implies [sinh(bx)/(bx)] < (l+E). I

Therefore

(4.22) j exp[t(x)] dP(x) (2n) - /  [sinh(bx)/(bx)] exp(-x2 /2) dx

S l~)+(ir 1/2 f]2 21 +E) + (27) f [sinh(bx)/(bx)] exp(-x /2) dx

Sl+ E) + (bM) -2 (27r)1/2 Jx Esinh(bx) ] 2 exp(_x2/2) dx,

which is finite. Hence condition (3.3) is satisfied. The other condition (3.6)

also holds since the integral is over a finite range and V(u) a -h(u).

Thus the random variables Tn's and P satisfy the conditions of Theorem 3.7. In

this example

(4.23) S n/n 3 / 4  d "

where the p.d.f. of Y* is given by d2 exp(-y /40), -= < y < =

Example 4.3. Let F be as defined in Example 4.2. Let P be symmetric Bernoulli,

i.e., P({-l}) = P({}) = 1/2. The joint distribution Qn is given by

r 2n
2 A~ -1 n sinh(bs n n)

(4.24) d ZnL(bn

" where x. = ±1 for all 1 !5 j ! n, and b = V 2. Recall that

(4.25) *(z) 2 log(sinh(bz)) 2 log(bz) for fReal(z)l <

and

(4.26) y(u) us1 - p(s1 ) if Jul < 2b,
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- where ,'(sl) = u. The cumulant generating function of P is given by

(4.27) h(u) = log cosh(u) , -= < u <

The function V(u) = y(u) - h(u) is finite if u < 2b. Now for u > 0,

(4.28) V'(u) = s 1 - h, (s1) )

= s- tanh '(sl))

s- '(s I ) > 0

as shown in Example 4.2. Since the first three derivatives of V at the origin are

equal to zero and V( 4 ) (0) = 13/5, the point zero is a minimum of order 2 for V.

This completes the verification of Part (I). We have already checked Part (11)

in Example 4.2. One can easily show that the probability measure P belongs to

the class L*, completing verification of Part (III). Thus by the conclusion of

Theorem 3.7 we get

3/4 d *
(4.29) Sn/n Y2

where the p.d.f. of Y* is given by d2 exp[-13y 4/1201, - < y <

Example 4.4. Let F be symmetric Bernoulli distribution and P be the standard

normal probability measure. The joint distribution in this example is given by

-I -n/2 n 1 2(4.30) dQn(x) = zn (2-ff) [cosh(sn/n)] exp[-,Txj fldx..

In this example

(4.31) n(z) [ cosh(z)]n

and

* (4.32) ip(z) =log Ccosh(z)J, for tReal(z)I <-

- -..- ' .

' o -, -o °% -.. . , , o- - .- % -, , • . . .. .
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The large deviation rate y(u) is finite for Jul < 1 and is given by

(4.33) y(u) = us2 - log[cosh(s2)],

2
where tanh(s2) = u. Since the c.g.f. of P is h(u) = u /2, we get for u> 0,

(4.34) V'(u) = s2 - h'(€'(s 2))

= s2 - tanh(s 2)] 0

since = tanh- (u) > 0. It is easy to check that the first three derivatives of

V at the origin are zero and V(4 )0() = 2. Thus zero is the unique global minimum

of order 2. This completes the verification of Part (I). It is easy to verify

that the lattice random variables T 's satisfy all the conditions of Theorem 3.16.
nI

2!

Part (III). Condition (3.3) is trivially satisfied since Cosh(x) exp(-x 2/2) is

an integrable function. Also for t > 0,

(4.35) [ exp[-t(V(u))] <- exp[th(u)]-

u ER uc Rn n

2 exp[u /21)
uc Rn

I tu222
- f exp[~ /23 = 0(n). "i.

Therefore P belongs to the class L*. Thus by the conclusion of Theorem 3.18 we

get

(4.36) S 3/4 d 2

4
where Y is distributed as d2 exp(-y /12), -. < y <

2 2.. . . .

. . . . . . . . . . . . .
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